Upper Bounds for the Span in Triangular Lattice Graphs: Application to Frequency Planning for Cellular Network Ecole Normale Supérieure De Lyon Upper Bounds for the Span in Triangular Lattice Graphs: Application to Frequency Planning for Cellular Network

نویسنده

  • Janez Zerovnik
چکیده

We study a problem coming from the design of wireless cellular radio communication network Frequency planning constraints are modelled in terms of graph theory For each planning function f let us call sp f or the span of the fre quency planning f the di erence between the largest and the smallest frequency used Let the Order of the graph be Or G sp G and the maximal local order of the graph the maximum order of a clique of G i e Mlo G max X clique of G sp X We show

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DALD:-Distributed-Asynchronous-Local-Decontamination Algorithm in Arbitrary Graphs

Network environments always can be invaded by intruder agents. In networks where nodes are performing some computations, intruder agents might contaminate some nodes. Therefore, problem of decontaminating a network infected by intruder agents is one of the major problems in these networks. In this paper, we present a distributed asynchronous local algorithm for decontaminating a network. In mos...

متن کامل

On Zagreb Energy and edge-Zagreb energy

In this paper, we obtain some upper and lower bounds for the general extended energy of a graph. As an application, we obtain few bounds for the (edge) Zagreb energy of a graph. Also, we deduce a relation between Zagreb energy and edge-Zagreb energy of a graph $G$ with minimum degree $delta ge2$. A lower and upper bound for the spectral radius of the edge-Zagreb matrix is obtained. Finally, we ...

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

Bounds for the Real Number Graph Labellings and Application to Labellings of the Triangular Lattice

We establish new lower and upper bounds for the real number graph labelling problem. As an application, we completely determine the optimum spans of L(p, q)-labellings of the infinite triangular plane lattice (solving an open problem of Griggs).

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997